tennisstats247.com
W40 Skopje



W40 Skopje Women ITF Women - Singles - North Macedonia 2023

ITF Women - Singles W40 Skopje is a tennis tournament played in North Macedonia. There are 48 players competing in the 2023 Women season. Among the players competing in the W40 Skopje are Chihiro Muramatsu, Ilay Yoruk, I. Daneva, Natalia Siedliska. Browse below for the W40 Skopje match results and fixtures, tennis trends or over/under number of games among other various statistics like 1st Set win sequence or set winning averages.

Final

Semi Finals

Quarter Finals

Round 3

Round 2

Round 1

Trends

Dejana Radanovic has won 83.33% of sets played in all W40 Skopje matches
Iva Primorac has won 83.33% of sets played in all W40 Skopje matches
Sara Cakarevic has won all 1st sets in the last 3 matches played at W40 Skopje

Players – Set Performance

Player NamePerformanceMatchesAverage
Dejana Radanovic 85 2.40
Iva Primorac 86 2.00
Justina Mikulskyte 44 2.50
Ayla Aksu 34 2.25
Sara Cakarevic 33 2.33
Dea Herdzelas 24 2.50
Leolia Jeanjean 23 2.00
Lina Gjorcheska 24 2.50
Sada Nahimana 23 2.00
Fanny Ostlund 13 2.33
Data in above table is calculated for Set Performance as number of sets won minus number of sets lost along the tournament.

Over/Under

Matches of... Total games score (player + opponent)
Avg. over 22.5
Aleksandra Krunic 18.00 0.00 %
Amelie Van Impe 26.00 50.00 %
Anastasia Zolotareva 32.00 100.00 %
Anastasiya Soboleva 25.00 50.00 %
Anja Stankovic 22.00 0.00 %
Ayla Aksu 21.25 25.00 %
Cagla Buyukakcay 18.00 0.00 %
Chihiro Muramatsu 21.00 50.00 %
Dea Herdzelas 25.25 50.00 %
Dejana Radanovic 21.20 40.00 %
Denislava Glushkova 19.00 0.00 %
Diana Marcinkevica 31.00 100.00 %
Dimitra Pavlou 15.00 0.00 %
Dunja Maric 22.00 0.00 %
Eleni Christofi 15.00 0.00 %
Fanny Ostlund 21.00 33.33 %
Gabriela Ce 18.00 0.00 %
Gabriela Lee 22.33 33.33 %
I. Daneva 13.00 0.00 %
Ilay Yoruk 27.50 50.00 %
Ipek Oz 27.50 100.00 %
Iva Primorac 17.50 16.67 %
Justina Mikulskyte 23.00 50.00 %
Ksenia Laskutova 24.00 50.00 %
Laura Mair 16.00 0.00 %
Leolia Jeanjean 16.00 0.00 %
Lexie Stevens 16.00 0.00 %
Lina Gjorcheska 23.50 75.00 %
Luca Udvardy 24.00 50.00 %
Magdalena Stoilkovska 18.00 0.00 %
Martha Matoula 17.00 0.00 %
Merel Hoedt 17.00 0.00 %
Mia Ristic 23.00 50.00 %
Miriana Tona 31.00 100.00 %
Nadine Keller 19.00 0.00 %
Nadine Smith Tina 23.00 100.00 %
Natalia Siedliska 19.00 0.00 %
Radka Zelnickova 24.00 50.00 %
Rina Saigo 31.00 100.00 %
Rosa Vicens Mas 22.50 50.00 %
Sada Nahimana 15.00 0.00 %
Sara Cakarevic 23.67 66.67 %
Solana Sierra 33.00 100.00 %
Tena Lukas 31.00 100.00 %
Verena Meliss 30.00 100.00 %
Yukina Saigo 22.00 0.00 %
Yvonne Cavalle-Reimers 15.00 0.00 %
Zhibek Kulambayeva 20.00 50.00 %
Tournament Avg.   37.29%
Data in above table is calculated from finished matches only.

Clean Sheets

Player Name CS Pld Perc.
Iva Primorac 5 6 83.33%
Dejana Radanovic 3 5 60.00%
Leolia Jeanjean 2 3 66.67%
Sada Nahimana 2 3 66.67%
Sara Cakarevic 2 3 66.67%
Ayla Aksu 1 2 50.00%
Dea Herdzelas 1 4 25.00%
Eleni Christofi 1 2 50.00%
Fanny Ostlund 1 3 33.33%
Gabriela Lee 1 3 33.33%
Justina Mikulskyte 1 2 50.00%
Ksenia Laskutova 1 2 50.00%
Lexie Stevens 1 2 50.00%
Lina Gjorcheska 1 4 25.00%
Luca Udvardy 1 2 50.00%
Merel Hoedt 1 2 50.00%
Rosa Vicens Mas 1 2 50.00%
Zhibek Kulambayeva 1 2 50.00%
Aleksandra Krunic 0 1 0.00%
Amelie Van Impe 0 2 0.00%
Anastasia Zolotareva 0 1 0.00%
Anastasiya Soboleva 0 2 0.00%
Anja Stankovic 0 1 0.00%
Cagla Buyukakcay 0 1 0.00%
Chihiro Muramatsu 0 1 0.00%
Denislava Glushkova 0 1 0.00%
Diana Marcinkevica 0 1 0.00%
Dimitra Pavlou 0 1 0.00%
Dunja Maric 0 1 0.00%
Gabriela Ce 0 1 0.00%
I. Daneva 0 1 0.00%
Ilay Yoruk 0 2 0.00%
Ipek Oz 0 2 0.00%
Laura Mair 0 1 0.00%
Magdalena Stoilkovska 0 1 0.00%
Martha Matoula 0 1 0.00%
Mia Ristic 0 2 0.00%
Miriana Tona 0 1 0.00%
Nadine Keller 0 1 0.00%
Nadine Smith Tina 0 1 0.00%
Natalia Siedliska 0 1 0.00%
Radka Zelnickova 0 1 0.00%
Rina Saigo 0 2 0.00%
Solana Sierra 0 1 0.00%
Tena Lukas 0 1 0.00%
Verena Meliss 0 1 0.00%
Yukina Saigo 0 1 0.00%
Yvonne Cavalle-Reimers 0 1 0.00%
Data in above table lists the number of clean sheets (matches with no lost sets) out of total matches played by each player in this tournament. All finished and retired matches are counted towards these statistics.

Form – Win Sequences

Player NameWin 1st SetSet Win%
Aleksandra Krunic0 0.00%
Amelie Van Impe2 50.00%
Anastasia Zolotareva0 33.33%
Anastasiya Soboleva0 40.00%
Anja Stankovic1 33.33%
Ayla Aksu0 66.67%
Cagla Buyukakcay0 0.00%
Chihiro Muramatsu0 40.00%
Dea Herdzelas0 60.00%
Dejana Radanovic1 83.33%
Denislava Glushkova0 0.00%
Diana Marcinkevica0 33.33%
Dimitra Pavlou0 0.00%
Dunja Maric0 33.33%
Eleni Christofi0 50.00%
Fanny Ostlund0 57.14%
Gabriela Ce0 0.00%
Gabriela Lee0 57.14%
I. Daneva0 0.00%
Ilay Yoruk1 50.00%
Ipek Oz2 50.00%
Iva Primorac0 83.33%
Justina Mikulskyte2 70.00%
Ksenia Laskutova0 60.00%
Laura Mair0 0.00%
Leolia Jeanjean0 66.67%
Lexie Stevens0 50.00%
Lina Gjorcheska0 60.00%
Luca Udvardy2 60.00%
Magdalena Stoilkovska0 0.00%
Martha Matoula0 0.00%
Merel Hoedt0 50.00%
Mia Ristic0 40.00%
Miriana Tona1 33.33%
Nadine Keller0 0.00%
Nadine Smith Tina0 0.00%
Natalia Siedliska0 0.00%
Radka Zelnickova0 40.00%
Rina Saigo1 50.00%
Rosa Vicens Mas2 60.00%
Sada Nahimana0 66.67%
Sara Cakarevic3 71.43%
Solana Sierra1 33.33%
Tena Lukas0 33.33%
Verena Meliss1 33.33%
Yukina Saigo0 0.00%
Yvonne Cavalle-Reimers0 0.00%
Zhibek Kulambayeva0 60.00%
Data in above table lists consecutive 1st Set wins by each player. When 1st Set is lost, data is reset. Set Win percentage shows the winning percentage out of total sets played by each player in this tournament. All finished and retired matches are counted towards these statistics.

The statistics for the tennis tournament W40 Skopje are updated regularly, as games are played and results are processed. Data shown in these statistics is organized to make it easy to identify tournament trends and probabilities for future tennis games, something that TennisStats247 system uses to calculate the predictions for ITF Women - Singles W40 Skopje. The Predictions section comes with updated daily tips as our algorithm calculates probabilities for various outcomes in tennis games and it improves as more tennis statistics are available from matches played.

Seasons