tennisstats247.com
W100 Madrid



W100 Madrid Women ITF Women - Singles - Spain 2025

ITF Women - Singles W100 Madrid is a tennis tournament played in Spain. There are 32 players competing in the 2025 Women season. Among the players competing in the W100 Madrid are Verena Meliss, Maria Timofeeva, Cristina Diaz Adrover, Tamara Korpatsch. Browse below for the W100 Madrid match results and fixtures, tennis trends or over/under number of games among other various statistics like 1st Set win sequence or set winning averages.

Final

Semi Finals

Quarter Finals

Round 2

Round 1

16/04/2025 Veronika Podrez
1 - 2
Chloe Paquet
16/04/2025 Kaitlin Quevedo
1 - 2
Irene Burillo Escorihuela
16/04/2025 Carlota Martinez Cirez
2 - 1
Noelia Bouzo Zanotti
16/04/2025 Leyre Romero Gormaz
0 - 2
Marina Bassols Ribera
16/04/2025 Alina Charaeva
2 - 0
Cristina Diaz Adrover
16/04/2025 Andrea Lazaro Garcia
2 - 0
Lourdes Carle Maria
16/04/2025 Anouck Vrancken Peeters
1 - 2
Oksana Selekhmeteva
16/04/2025 Mayar Sherif
1 - 0
Verena Meliss
16/04/2025 Andreea Prisacariu
0 - 2
Maria Timofeeva
16/04/2025 Ariana Geerlings Martinez
0 - 2
Renata Zarazua
16/04/2025 Guiomar Maristany Zuleta De Reales
2 - 0
C. Corte
16/04/2025 Elizabeth Mandlik
1 - 2
Caroline Werner
15/04/2025 Marta Soriano Santiago
0 - 2
Angela Fita Boluda
15/04/2025 Antonia Ruzic
0 - 2
Eva Vedder
15/04/2025 Aliona Bolsova Zadoinov
2 - 1
Tena Lukas
15/04/2025 Tamara Korpatsch
2 - 0
Nicole Fossa Huergo

Trends

Mayar Sherif has won 100.00% of sets played in all W100 Madrid matches
Mayar Sherif has won all 1st sets in the last 5 matches played at W100 Madrid
Marina Bassols Ribera has won all 1st sets in the last 4 matches played at W100 Madrid

Players – Set Performance

Player NamePerformanceMatchesAverage
Mayar Sherif 95 1.80
Marina Bassols Ribera 54 2.25
Renata Zarazua 55 2.20
Chloe Paquet 34 2.25
Alina Charaeva 23 2.00
Andrea Lazaro Garcia 23 2.00
Maria Timofeeva 23 2.00
Tamara Korpatsch 23 2.00
Angela Fita Boluda 02 2.00
Eva Vedder 02 2.00
Data in above table is calculated for Set Performance as number of sets won minus number of sets lost along the tournament.

Over/Under

Matches of... Total games score (player + opponent)
Avg. over 22.5
Alina Charaeva 19.33 33.33 %
Aliona Bolsova Zadoinov 23.00 50.00 %
Andrea Lazaro Garcia 17.33 0.00 %
Andreea Prisacariu 14.00 0.00 %
Angela Fita Boluda 16.50 0.00 %
Anouck Vrancken Peeters 26.00 100.00 %
Antonia Ruzic 18.00 0.00 %
Ariana Geerlings Martinez 20.00 0.00 %
C. Corte 13.00 0.00 %
Carlota Martinez Cirez 22.50 50.00 %
Caroline Werner 22.50 50.00 %
Chloe Paquet 21.25 25.00 %
Cristina Diaz Adrover 16.00 0.00 %
Elizabeth Mandlik 29.00 100.00 %
Eva Vedder 20.50 50.00 %
Guiomar Maristany Zuleta De Reales 18.00 50.00 %
Irene Burillo Escorihuela 19.00 0.00 %
Kaitlin Quevedo 22.00 0.00 %
Leyre Romero Gormaz 24.00 100.00 %
Lourdes Carle Maria 19.00 0.00 %
Maria Timofeeva 19.00 0.00 %
Marina Bassols Ribera 21.75 50.00 %
Marta Soriano Santiago 16.00 0.00 %
Mayar Sherif 17.20 0.00 %
Nicole Fossa Huergo 21.00 0.00 %
Noelia Bouzo Zanotti 27.00 100.00 %
Oksana Selekhmeteva 24.00 50.00 %
Renata Zarazua 20.60 20.00 %
Tamara Korpatsch 21.00 33.33 %
Tena Lukas 27.00 100.00 %
Verena Meliss 12.00 0.00 %
Veronika Podrez 29.00 100.00 %
Tournament Avg.   33.18%
Data in above table is calculated from finished matches only.

Clean Sheets

Player Name CS Pld Perc.
Mayar Sherif 5 5 100.00%
Marina Bassols Ribera 3 4 75.00%
Renata Zarazua 3 5 60.00%
Alina Charaeva 2 3 66.67%
Andrea Lazaro Garcia 2 3 66.67%
Chloe Paquet 2 4 50.00%
Maria Timofeeva 2 3 66.67%
Tamara Korpatsch 2 3 66.67%
Angela Fita Boluda 1 2 50.00%
Eva Vedder 1 2 50.00%
Guiomar Maristany Zuleta De Reales 1 2 50.00%
Aliona Bolsova Zadoinov 0 2 0.00%
Andreea Prisacariu 0 1 0.00%
Anouck Vrancken Peeters 0 1 0.00%
Antonia Ruzic 0 1 0.00%
Ariana Geerlings Martinez 0 1 0.00%
C. Corte 0 1 0.00%
Carlota Martinez Cirez 0 1 0.00%
Caroline Werner 0 2 0.00%
Cristina Diaz Adrover 0 1 0.00%
Elizabeth Mandlik 0 1 0.00%
Irene Burillo Escorihuela 0 1 0.00%
Kaitlin Quevedo 0 1 0.00%
Leyre Romero Gormaz 0 1 0.00%
Lourdes Carle Maria 0 1 0.00%
Marta Soriano Santiago 0 1 0.00%
Nicole Fossa Huergo 0 1 0.00%
Noelia Bouzo Zanotti 0 1 0.00%
Oksana Selekhmeteva 0 2 0.00%
Tena Lukas 0 1 0.00%
Verena Meliss 0 1 0.00%
Veronika Podrez 0 1 0.00%
Data in above table lists the number of clean sheets (matches with no lost sets) out of total matches played by each player in this tournament. All finished and retired matches are counted towards these statistics.

Form – Win Sequences

Player NameWin 1st SetSet Win%
Alina Charaeva0 66.67%
Aliona Bolsova Zadoinov0 40.00%
Andrea Lazaro Garcia0 66.67%
Andreea Prisacariu0 0.00%
Angela Fita Boluda0 50.00%
Anouck Vrancken Peeters1 33.33%
Antonia Ruzic0 0.00%
Ariana Geerlings Martinez0 0.00%
C. Corte0 0.00%
Carlota Martinez Cirez0 40.00%
Caroline Werner0 40.00%
Chloe Paquet0 66.67%
Cristina Diaz Adrover0 0.00%
Elizabeth Mandlik0 33.33%
Eva Vedder0 50.00%
Guiomar Maristany Zuleta De Reales0 50.00%
Irene Burillo Escorihuela0 40.00%
Kaitlin Quevedo0 33.33%
Leyre Romero Gormaz0 0.00%
Lourdes Carle Maria0 0.00%
Maria Timofeeva0 66.67%
Marina Bassols Ribera4 77.78%
Marta Soriano Santiago0 0.00%
Mayar Sherif5 100.00%
Nicole Fossa Huergo0 0.00%
Noelia Bouzo Zanotti1 33.33%
Oksana Selekhmeteva0 40.00%
Renata Zarazua0 72.73%
Tamara Korpatsch0 66.67%
Tena Lukas0 33.33%
Verena Meliss0 0.00%
Veronika Podrez1 33.33%
Data in above table lists consecutive 1st Set wins by each player. When 1st Set is lost, data is reset. Set Win percentage shows the winning percentage out of total sets played by each player in this tournament. All finished and retired matches are counted towards these statistics.

The statistics for the tennis tournament W100 Madrid are updated regularly, as games are played and results are processed. Data shown in these statistics is organized to make it easy to identify tournament trends and probabilities for future tennis games, something that TennisStats247 system uses to calculate the predictions for ITF Women - Singles W100 Madrid. The Predictions section comes with updated daily tips as our algorithm calculates probabilities for various outcomes in tennis games and it improves as more tennis statistics are available from matches played.

Seasons